Flows on the torus

Spencer Unger

University of Toronto

August 25, 2023

Joint work with Andrew Marks, and Anton Bernshteyn and Anush Tserunyan

Equidecomposition of functions

Definition

Let f, g be real valued functions on space X. f and g are equidecomposible as functions if there are functions h_0, \ldots, h_m and transformations T_1, \ldots, T_m such that $f = h_0 + h_1 + \cdots + h_m$ and $g = h_0 + T_1 h_1 + \cdots + T_m h_m$.

Flows

Let G = (X, E) be a directed symmetric graph on X. Let \mathbb{R}^X be the set of real valued functions on X. And let Φ_E be the set of functions $\phi : E \to \mathbb{R}$ such that $\phi(x, y) = -\phi(y, x)$ for all $(x, y) \in E$.

Define an action of Φ_E on $X^{\mathbb{R}}$ by

$$(\phi \oplus f)(x) = f(x) - \sum_{y \in N(x)} \phi(x, y)$$

We say ϕ is an *f*-flow in *G* if $\phi \oplus f = 0$.

Equivalence

Let T_1, \ldots, T_m be transformations of X and let E be the symmetric graph generated by T_1, \ldots, T_m and their inverses.

Proposition

f and g are equidecomposible as functions using the translations T_1, \ldots, T_m if and only if there is an f - g-flow in (X, E).

By some algebra involving the action, we have $\phi \oplus (f - g) = 0$ if and only if $\phi \oplus f = g$.

Our setting

We work with bounded, real valued, Borel functions f on \mathbb{T}^k and translations T_1, \ldots, T_m and we attempt to find flows that are Borel.

Constructing flows

By the proposition, we change perspective and let $f : \mathbb{T}^k \to \mathbb{R}$ be a function with $\int f d\lambda = 0$ and try to construct an *f*-flow ϕ the graph G = (X, E) generated by some fixed translations T_1, \ldots, T_m and their inverses.

- 1. Define a sequence of functions $f_0 = f, f_1, \ldots$ which are given by some iterated averaging procedure using the edges of G.
- 2. Associated to this averaging procedure, define a sequence of flows ϕ_n such that $\phi_n \oplus f_n = f_{n+1}$.
- 3. If we can show that $\lim_{n\to\infty} f_n = 0$ and $\phi = \sum_{i=0}^{\infty} \phi_i$ is absolutely convergent, then ϕ is an *f*-flow in *G*.

$$\phi \oplus f = \left(\sum_{i=0}^{\infty} \phi_i\right) \oplus f = \lim_{N \to \infty} \left(\sum_{i=0}^{N} \phi_i\right) \oplus f = \lim_{N \to \infty} f_{N+1} = 0$$

Averaging using random walks

(Joint work with Anton Bernshteyn and Anush Tserunyan)

Let G be the Schreier graph on \mathbb{T}^k generated by the \mathbb{Z}^d action of d randomly chosen translations and the standard generators $S = \{\pm e_1, \ldots, \pm e_d\}.$

For $h:\mathbb{T}^k o\mathbb{R}$, let $\Delta h(x)=rac{1}{2d}\sum_{e\in S}h(e\cdot x)$

Note that if ϕ is the flow that assigns to each edge $(x, e \cdot x)$ the value $(1/2d)(h(e \cdot x) - h(x))$, then $\phi \oplus h = \Delta h$.

Wishful thinking

Let $f : \mathbb{T}^k \to \mathbb{R}$ be a function with $\int f d\lambda = 0$ and consider the sequence $f, \Delta f, \Delta^2 f, \ldots$.

We hope the sequence goes to 0 and moreover that the sum of the flows implementing the sequence is absolutely convergent.

Define $\phi_n(x, e \cdot x) = \frac{1}{2d} ((\Delta^n f)(e \cdot x) - (\Delta^n f)(x))$ and compute the sum:

$$\phi(x, e \cdot x) = \sum_{n=0}^{\infty} \phi_n = \sum_{n=0}^{\infty} \frac{1}{2d} \Big((\Delta^n f) (e \cdot x) - (\Delta^n f) (x) \Big)$$
$$= \frac{1}{2d} \Big(\sum_{n=0}^{\infty} (\Delta^n f) (e \cdot x) - \sum_{n=0}^{\infty} (\Delta^n f) (x) \Big)$$

So we would really like that $\sum_{n=0}^{\infty} (\Delta^n f)(x)$ converges absolutely. If it does, then we have $\phi \oplus f = 0$.

Discrepancy

We note that $(\Delta^n f)(x) = \int f d\rho_n^x$ where ρ_n^x is the probability measure defined on the orbit of x where $\rho_n^x(y)$ is the probability that a simple random walk starting at x ends at y after n steps.

For a measure μ and a function f, we define the *discrepancy* of f with respect to μ to be $D(f, \mu) = |\int f d\lambda - \int f d\mu|$. When f is the characteristic function of a set A, then we write $D(A, \mu)$.

So to show that $\sum_{n=0}^{\infty} \Delta^n f$ is absolutely convergent it is enough to bound $D(f, \rho_n^x)$ for all *n* and *x*.

From functions to intervals

The following lemma is due to Laczkovich:

Lemma

Let μ be a probability measure on \mathbb{T}^k . Suppose that $A \subseteq \mathbb{T}^k$ with $\text{Dim}(\partial A) < k$, then there are $\epsilon \in (0, 1)$ and constant K such that $D(A, \mu) \leq KD(\mu)^{\epsilon}$. Moreover, the ϵ and K only depend on $\text{Dim}(\partial A)$ rather than A.

Where Dim is the upper Minkowski dimension and $D(\mu) = \sup D(B, \mu)$ where the sup is over axis parallel boxes.

From functions to intervals 2

We define a notion of dimension of the boundary of a function $Dim(\partial f)$ as follows. Let

$$(\partial_{\delta}f)(x) = \sup_{y \in B_{\delta}(x)} f(y) - \inf_{y \in B_{\delta}(x)} f(y)$$

Then

$$\operatorname{Dim}(\partial f) = k + \lim_{\delta \to 0^+} \frac{\log \int \partial_{\delta} f d\lambda}{-\log(\delta)}$$

We prove an analog of the previous theorem for functions with small boundary.

Bounding $D(\rho_n^x)$

The previous argument allows us to reduce to bounding $D(\rho_n^x)$. Some ideas:

- 1. We use the Erdös-Turan-Koksma theorem from which it is enough to bound the Fourier coefficients of ρ_n^x .
- 2. These Fourier coefficients are independent of x!
- 3. Using the randomly chosen translations it is enough to bound the expected value of our sum.
- 4. Bounding the final sum uses the transience of the random walk in the *d*-dimensional grid for $d \ge 3$.

Generalization

Recall we found that our flow was easily definable from $g = \sum_{n=0}^{\infty} \Delta^n f$ and note that this satisfies the formula:

$$f = (1 - \Delta)g$$

This suggests that finding flows is similar to inverting operators like $1-\Delta$ and leads to the following generalization:

Let $\mathscr{B}(\mathbb{T}^k)$ be the set of bounded Borel functions on \mathbb{T}^k .

Theorem (Bernshteyn-Tserunyan-U)

There is a natural class of operators $\mathscr{P}_d(\bar{u})$ on $\mathscr{B}(\mathbb{T}^k)$ defined uniformly from $\bar{u} \in (\mathbb{T}^k)^d$ such that the following holds. For almost every $\bar{u} \in (\mathbb{T}^k)^d$, for all $f \in \mathscr{B}(\mathbb{T}^k)$ with $\int f d\lambda = 0$ and for all $p \in \mathscr{P}_d(\bar{u})$, if $\text{Dim}(\partial f)$ is sufficiently small relative to a fixed function of p and k, then there is $g \in \mathscr{B}(\mathbb{T}^k)$ such that f = (1 - p)g.

Corollary

If f, g are bounded Borel functions on \mathbb{T}^k with the same Lebesgue integral and $\text{Dim}(\partial f), \text{Dim}(\partial g) < k$, then f and g are equidecomposible as functions with Borel witnesses using translations.

Another way of averaging

(Joint work with Andrew Marks) Recall our framework for constructing flows of a function f was to define a sequence of functions f_n and "flows between them".

In the context of circle squaring, we can define $f_n(x)$ to be the average of f over an $|\cdot|_{\infty}$ -norm box R of side length 2^n anchored at x in the action of T_1, \ldots, T_m .

In this context it is straightforward to define flows ϕ_n such that $\phi_n \oplus f_n = f_{n+1}$.

Moreover, the absolute convergence of $\sum_{i=1}^{\infty} \phi_i$ is directly related to Laczkovich's discrepancy estimates.

Decomposing sets with small boundary

Laczkovich's 1992 theorem applies to sets $A, B \subseteq \mathbb{T}^k$ with the same positive Lebesgue measure and $\text{Dim}(\partial A), \text{Dim}(\partial B) < k$.

To bound the averages from the previous slide, T_1, \ldots, T_m are chosen uniformly at random. In contrast, we have the following theorem:

Theorem (Marks-U)

Laczkovich's discrepancy estimates for sets of small boundary are possible using translations whose coordinates are either 0 or algebraic irrational.

Corollary

Known circle squaring results are possible with these vectors.

This answers a question of Laczkovich from his 1990 paper.

Some ideas from the proof

- 1. We make use of product actions.
- 2. We bound discrepancy of sets with small boundary with respect to product sets in terms of the one dimensional discrepancy of the components of the product.
- 3. The previous item allows us to replace the use of the Erdos-Turan-Koksma inequality with the Erdos-Turan inequality.
- 4. We use a theorem of Schmidt about simultaneous approximation of return times of quadratic irrationals.